Data for: Tetragonal distortion in magnetron sputtered bcc-W films with supersaturated carbon
Materials & Design (2022)
B.O. Mukhamedov1, S. Fritze2, M. Ottosson2, B. Osinger2, E. Lewin2, B. Alling1, U. Jansson2, I.A. Abrikosov1,3
Carbon has a low solid solubility in bcc tungsten at equilibrium. However, metastable supersaturated solid solutions can be synthesized with magnetron sputtering. Here, we present a systematic study on the phase stability and mechanical properties of such supersaturated W–C solid solutions. Θ–2θ scans show a split of the 200/020 and the 002 peaks for supersaturated films which is explained by a tetragonal distortion of the bcc structure. This split increases with increasing C content and is maximized at 4 at.% C, where we observe an a/b axis of 3.15-3.16 Å and a c-axis of 3.21-3.22 Å. We performed first-principles calculations of lattice parameters, mixing enthalpies, elastic constants and polycrystalline elastic moduli for cubic and tetragonal W–C solid solutions. Calculations show that tetragonal structure is more stable than the bcc supersaturated solid solution and the calculated lattice parameters and Young’s moduli follow the same trends as the experimental ones as a function of C concentration. The results suggest that supersaturated films with lattice distortion can be used as a design approach to improve the properties of transition metal films with a bcc structure.
Keywords: Tungsten; Supersaturated solid solution; Thin film diffraction; Density functional theory; Thermodynamic stability; Elastic property.
Data
An archive with the data related to this work is available here:
- Hosted by Open Materials Database: W_C_all_files.tar.gz
- Backup link (in case of issues with the above link): W_C_all_files.tar.gz
Note: if any of the above links are broken or anything else needs to be updated, please let us know using the contact info on the dataset web page.